Fourier Analysis
Review.
The (Poisson summation formula)
Let $f \in M(\mathbb{R})$. Assume that $\hat{f} \in M(\mathbb{R})$. Then

$$
\sum_{n \in z} f(x+n)=\sum_{n \in \mathbb{Z}} \hat{f}(n) e^{2 \pi i n x}
$$

In particular,

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{n \in \mathbb{Z}} \hat{f}(n)
$$

Thy. Let $f \in M(\mathbb{R})$.
Suppose that $\hat{f}$ is supported on $I=\left[-\frac{1}{2}, \frac{1}{2}\right]$, that is,

$$
\hat{f}(\xi)=0 \text { for all } \xi \in \mathbb{R}\rangle I \text {. }
$$

Then
(1) $f$ is determined by the values of $f$ at $n \in Z$. More precisely

$$
f(x)=\sum_{n \in Z_{z}} f(n) \cdot \frac{\sin (\pi(x-n))}{\pi(x-n)}
$$

(2) $\int_{-\infty}^{\infty}|f(x)|^{2} d x=\sum_{n \in \mathbb{Z}}|f(n)|^{2}$.

Pf. Write $g=\hat{f}$. clearly $g$ is cts.
Since $g$ is supported on $I=\left[-\frac{1}{2}, \frac{1}{2}\right]$, $g \in M(\mathbb{R})$.

Then

$$
\begin{aligned}
\hat{g}(\xi) & =\int_{-\infty}^{\infty} g(x) e^{-2 \pi i \xi x} d x \\
& =\int_{-\infty}^{\infty} \hat{f}(x) e^{-2 \pi i \xi x} d x
\end{aligned}
$$

(Inversion formula) $f(-\xi)$.

So $\hat{g} \in M(\mathbb{R})$.
Notice that $g$ is supported on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
For $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$,

$$
\begin{aligned}
& g(x)=\sum_{n \in \mathbb{Z}} g(x+n) \\
& \stackrel{\text { (by Poisson Summation }}{\text { formulate }}=\sum_{n \in \mathbb{Z}} \hat{g}(n) e^{2 \pi i n x}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n \in \mathbb{Z}} f(-n) e^{2 \pi i n x} \\
& =\sum_{n \in \mathbb{Z}} f(n) e^{-2 \pi i n x}
\end{aligned}
$$

That is,

$$
g(x)=\sum_{n \in \mathbb{Z}} f(n) e^{-2 \pi i n x} \text { on }\left[-\frac{1}{2}, \frac{1}{2}\right]
$$

Next we apply the inversion formula:

$$
\begin{aligned}
f(x) & =\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i \xi x} d \xi \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} \hat{f}(\xi) e^{2 \pi i \xi x} d \xi \\
& \left.=\int_{-\frac{1}{2}}^{\frac{1}{2}} g(\xi) e^{2 \pi i \xi x} d \xi \text { since } \hat{f}_{\text {supported }} \text { on }\left[-\frac{1}{2}, \frac{1}{2}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\sum_{n \in \mathbb{Z}} f(n) e^{-2 \pi i n \xi}\right) e^{2 \pi i \xi x} d \xi \\
& \stackrel{(D C T)}{ } \sum_{n \in \mathbb{}} \int_{-\frac{1}{2}}^{\frac{1}{2}} f(n) e^{-2 \pi i n \xi} \cdot e^{2 \pi i \xi x} d \xi \\
& =\sum_{n \in \mathbb{Z}} \int_{-\frac{1}{2}}^{\frac{1}{2}} f(n) e^{2 \pi i \xi(x-n)} d \xi \\
& =\left.\sum_{n \in \mathbb{Z}} f(n) \cdot \frac{e^{2 \pi i \xi(x-n)}}{2 \pi i(x-n)}\right|_{\xi=-\frac{1}{2}} ^{\frac{1}{2}} \\
& =\sum_{n \in \mathbb{Z}} f(n) \frac{e^{\pi i(x-n)}-e^{-\pi i(x-n)}}{2 i \pi(x-n)} \\
& =\sum_{n \in \mathbb{Z}} f(n) \frac{\sin (\pi(x-n))}{\pi(x-n)} .
\end{aligned}
$$

This proves (1).

To prove (2), recall that

$$
g(x)=\sum_{n \in \mathbb{Z}} f(-n) e^{2 \pi i n x}
$$

(supported

$$
\text { on } \left.\left[-\frac{1}{2}, \frac{1}{2}\right]\right)
$$

Since $g$ is cts and the RHS converges absolutely, the RHS is the Fourier series of $g$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
By Parserval identity,

$$
\begin{aligned}
\int_{-\frac{1}{2}}^{\frac{1}{2}}|g(x)|^{2} d x & =\sum_{n \in \mathbb{Z}}|f(-n)|^{2} \\
& =\sum_{n \in \mathbb{Z}}|f(n)|^{2}
\end{aligned}
$$

Observe that

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}|g(x)|^{2} d x=\int_{-\frac{1}{2}}^{\frac{1}{2}}|\hat{f}(x)|^{2} d x
$$

$$
=\int_{-\infty}^{\infty}|\hat{f}(x)|^{2} d x
$$

( $\hat{f}$ is supported on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ )

$$
=\int_{-\infty}^{\infty}|f(x)|^{2} d x
$$

That is,
(by Plancherel formula)

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\sum_{n \in \mathbb{Z}}|f(n)|^{2}
$$

